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Summary

(a) Objective

The purpose of this contract is to investigate the flare antennas, which are considered to be a

class of broadband radiators which have minimum dispersion, so they also preserve the waveform

of the input signal. Conventional broadband antennas, such as, spiral and helical antennas are

very dispersive. They may be good radiators for a broadband of signals, but they do not preserve

the waveform of the exciting signal. That is, a pulse input may not result in a pulse radiated.

(b) Technical Problems

While the time domain method has been successfully applied to scattering and microstrip

problems, their applications to antenna problems has yet to be developed. Theoretically speaking

there is no difference between a scattering problem and an antenna problem. But, technically they

are different. Excitation, for example, is very different between an antenna problem and a

scattering. In an antenna the excitation is very localized, while in scattering it is distributed. In

finite difference method, a localized excitation frequently causes stability problem. Therefore, a

computer code capable of solving a scattering problem may not be able to solve an antenna prob-

lem. In this contract, our first task is to isolate the technical problems so as to make sure that the

way we treat the excitation, the absorption is correct.

(c) Methodology

The method to be used in this investigation is the time domain finite difference method,

which has been used quite successfully in electromagnetic scattering of three dimensional objects

of very complex shapes. A modified form of the method, the time domain finite element method,

may be eventually partially used in this investigation, because a flare antenna involves curved

edges which carnot he easily treated by the finite difference method. Additional advantages of

the time domain method are the directness of the observation of tl,c ficlds in time sequences and

the economy of investigating the preservation of pulse shapes. Using the frequency domain

method, for example, calculations of many frequencies will be required to investigate the result
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of a single pulse.

(d) Technical Results

The way we isolate the excitation and absorption treatment is to solve an antenna problem

which is similar to the flare antenna yet has been well studied by other investigators, so that our

results can be verified either theoretically or experimentally. The antenna we choose for this pur-

pose is a patch antenna. Although a patch antenna is a narrow band antenna, its geometry has

many similarities to the flare antenna. They are both composed of flat sheets and they can both be

excited by microstrips and their absorption problems are similar. In an interim report (Appendix

A) we are pleased to show that the results we have obtained on patch antennas are remarkably

accurate compared to both theoretical and experimental results reported by other authors, indicat-

ing the integrity of the time domain method we have used.

(e) Important Findings and Conclusions

In our investigation, we have found that the microstrip excitation can be modeled very

accurately by the time domain method, and that the super-absorption method we have developed

is a very easy-to-apply and superior technique to simulate the radiation boundary conditions.

Because, by using these techniques the time domain results are well verified theoretically and

experimentally based on the calculations and measurements independently done by other authors.

We have concluded that the time domain method is capable of solving antenna problems includ-

ing the flare antenna.

(f) Implications for Further Research

Since we have confirmed the time domain finite difference method as a valid tool for

antenna analysis, we are proceeding to investigate the flare antenna. Our only difficulty now is to

rewrite the code for the flare antenna which involves the conforming to the curve of the flare.

(g) Significant Software Development

As a by-product of this research, we have developed a software package for patch antennas.

"lnis software pa, kagc is for research purpose only. It is not "friendly" enough for designing
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patch antennas. A more "flexible" code is contemplated for the flare antenna.

(h) Special Comments

This interim report is intended to study the excitation of co-planar sheet antenmis and the

new absorbing boundary condition. The patch antenna is just a convenient subject which just hap-

pen to have inany available results for comparison. We do not suggest that the patch antenna is a

good candidate for broadband applications; it is the flare antenna which is the objective of this

research.
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Appendix A

TIME DOMAIN FINITE DIFFERENCE ANALYSIS
OF ANTENNAS-ELECTRICALLY THIN AND

THICK MICROSTRIP ANTENNAS

By Kenneth K. Mei
Yong Liu
D. J. Angelakos

Electronics Research Laboratory
University of California

Berkeley, CA 94720

Sponsored by: Rome Air Development Center
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1. INTRODUCTION

In this report the microstrip antenna is studied as an intermediate step to the development of

a broadband type flare antenna, because the microstrip antennas have b~t well investigated so

there are considerable results available to check our time domain technique. In fact, the micros-

trip antennas have many advantages of their own, such as, lightweight, low profile, low fabrica-

tion costs, and ease for mass production. Despite their obvious disadvantages of narrow

bandwidth and low power capacity, the microstrip antennas have found many areas of applica-

tions.

The conception of microstrip antennas can be dated back to 1953 (Deschamp), however, it

didn't receive wide attention until the 1970's. Presently, the properties of microstrip antennas are

already very familiar to antenna engineers and the methods of analyzing microstrip antennas are

also plentiful. Among the methods of analysis, the "Cavity Model" is most common (Y. T. Lo,

et al. [9]). This model considers the region between the microstrip antenna and the ground plane

as a cavity bounded by magnetic walls along four side edges of the antenna, and by electrical

walls formed by the antenna patch and the ground plane. Therefore the fields under the patch can

be assumed to be those of a cavity. The microstrip feed line is modeled by a strip current under

the feeding line on one of the magnetic walls. From the cavity fields, one can obtain radiation pat-

terns, radiated powers, resonant frequencies and input impedances at any feed point. The results

are in good agreement with experiments, however, they are only good for very thin microstrip

antennas and for low frequencies.

Carver and Coffey [10] used similar techniques incorporating impedance boundary condi-

tions on the radiating walls. Good results were obtained as expected. However, there is no way to

find the impedances of radiation walls analytically, so a numerical method is finally used.

Another simple and descriptive model is the Transmission Line Model (6]. In this model,

the rectangular patch antenna is considered to be a line resonator without transverse field varia-

tion. The longitudinal length is about half wavelength, and the fields are radiated through the
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front and end open-circuit ends via fringing effects. Simple analytical expression is obtained,

which reveals the radiation mechanism, and acceptable results have been obtained.

Various numerical methods have been developed too. These include: finite element method

(Carver and Coffey [101), the wire grid model [161, integral equation method (Bailey and Desh-

pande[ 13]), moment method (Pozar [ 12 ]) etc.

All the above analyses are good only for thin substrate antennas. As the substrate becomes

electrically thick, those methods either deteriorate or fail completely. In the above mentioned

methods, the calculations are done in the frequency domain, which produces results of one fre-

quency with each round of computation. Almost all of the above methods need some empirical

or semi-empirical formulas or data to get a good result. The Time Domain Finite Difference

(TDFD) Method we are going to use for analysis is self-consistent and avoids many shortcomings

of the above methods.

The TDFD method was first introduced in 1966 by K. S. Yee [1]. This method has been

widely employed by investigators in EM field. The TDFD method has many advantages. First, it

discretizes Maxwell's equations into first order difference equations, yet provides second order

accuracies. Secondly, there is no need to solve any matrix, the whole scheme is a simple time

marching process. Thirdly, it's very suitable for analysis of planar structures because no special

treatment is needed for edge fields of metals if we arrange to allow tangential E and vertical I

fields to be located on metal surfaces. Finally, it has ,ittle numerical dispersion.

In this research, a pulse is sent out along the feeding microstrip line, Fig. (1). Time domain

finite difference method is used to simulate the pulse propagation along the microstrip line, and

the pulse reflection from, and the pulse resonance under, the microstrip patch (one can actually

visualize the reflections from the end edge and side edge of the microstrip antenna). Fourier

transforms are used to obtain frequency results from time domain data. Radiation patterns,

resonant frequencies and input impedances of different antennas have been computed. The results

are in good agreement with existing experiments or empirical formulas. It should be noted that, in
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this method, (1) only one time domain simulation is needed to obtain results at all frequencies of

interest. (2) In the analysis, thick substrate microstrip antennas require less memory and less com-

putation time than thin substrate ones, because of less oscillation of fields under the patch

antenna. This feature just compensates other methods in previous researchers. And (3) it can be

easily used to calculate mutual couplings of microstrip antenna elements. Finally, this method is

self-consistent, that is, it does not need any empirical information.

2. FORMULATION

2.1 General Descriptions

The geometry of the patch antenna is shown in Fig. (1). The related parameters are defined

in Fig. (2). The feed line is embedded in the d icectric material and is electromagnetically cou-

pled to the patch antenna. The patch is flush at the air-dielectric interface. When mp I = m 1, the

antenna has the configuration of a conventional direct microstrip-line-fed microstrip antenna.

Because of symmetry, we only need to compute half of the domain, with a magnetic wall at the

center plane (y = 0) as a boundary.

For convenience, we assume:

1. all the conductors are perfect conductors (a = 0);

2. the microstrip lines and patches are infinitesimally thin;

3. the dielectric is perfect (i.e. isotropic and lossless);

4. the ground plane and the dielectric extend to infinity in y, z direction;

5. the initial fields are zero everywhere except on the front plane, where we impose some fixed

boundary condition;

6. at all open side planes of the domain, on the artificial boundary, the energy storage field is

negligible; and assume I-D Sommerfeld Radiation boundary could be applied.

Assumptions 5 and 6 are concerned with the initial condition and absorbing boundary con-

ditions for this problem, which when combined with time domain Maxwell equation give a

unique solution to the fields in our computation domain.
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2.2 Simulation Scheme

Yee 's Lattice and Leap-Frog Scheme

Yee's lattice is shown in Fig. (3), where different electric and magnetic components occupy

different space nodes. E-fields are computed only at times t = n dt and H-fields are computed

only at times t = (n + 112)dt. The leap-frog scheme reads:

E '(ijk) = E(ij Hn+(ij+l,k)-H + (i,j,k) H>+'(idj,k+l)-H +(ij,k)
E , dy dz

dt Hn+'12(ij,k +1) -Hxn+(ij,k) Hn+ ll(i+l,j,k)-Hn* '(ij,k)
Ey+( ,j ,k ) = Ey(ij ,k) + " - dz -_ z dx

E l(i ,j ,k) = En(i _,k) + it [y H '(i +,j ,k) - H +(i ,j ,k) E /(i j + , k ) - H +'( jk

Hg+" (i~d ,jijk ,k ) Enq-( k)

H ~~dt E'1 (ik)=j,,k) - ~~,k- )  Eyn(ij,k) - E(i,j,k) 19dy -1)

H1+(i,j,k) = n- (i ,j z

S+ E(ij,k )- E_(i-j,k) E(i,j,k)- E(ij-lk)

H z (n ,Nj,k ) = H -V( ,n ,k(i~ k --y(- j k -- (i~ k -r dzi~ (1

It is obvious in the first 3 equations of (1) that if the (n -r/)dt is the present time, then the E

fields of the future time (n+l)dt can be calculated from the present H and past E fields. The last

3 equations of (1) calculates the future H fields from the present E fields and past H fields.

For details, please refer to [2], [4].

By updating the fields according to these formulas, we can simulate pulse propagation,

reflection from the patch and resonance under the patch. The absorbing boundary conditions

simulate the radiation of fields, and the leakage of surface waves.

2.3 Radiation Pattern

To find the radiation fields in the space above the substrate, we apply the principle of

equivalent sources. There are many ways to do so. Since the TDFD method provi 4cs fields every-
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where in the computational domain at all time of the simulation, we can actually choose any

closed surface for the equivalent sources. Of course, we need to choose one which is most con-

venient for integration to find the far fields. And, for that reason, we choose the air-subvtrate

interface as the surface on which the equivalent sources are located. In our calculation, we

choose the magnetic current on perfectly conducting surface as the basis for equivalent sources

The magnetic currents are the tangential electric fields on the air substrate interface. Since the

sources are backed by electrically conducting plane, the radiated fields are equivalent to radiation

from J,. in free space, where

J, = 2 E x ?f (2)

Where f is the unit vector perpendicular to the surface of equivalent current. The bold face vari-

ables represent vectors. The schematics of the equivalent sources are shown in Fig. (4).

We may also use equivalent electric current on magnetic walls for the same computation.

There does not seem to be any difference in the choices.

It is obvious that the time domain data of the magnetic current is too large to store in com-

puter memory. So, as the computation marches on, Fourier Transform of the magnetic current is

calculated simultaneously,

J."(CO) J , oJ(t)e-J° dt (3)

The magnetic current is then extended to the left half plane by image of the magnetic wall of Fig.

(2). Where,

J,,,Y (-y ,z ,(o) = JY (Y ,z ,O)

J ,,, (-Y z ,(0) =-J ,,. (Y z ,6)

Here for convenience, we change the coordinates (Fig. (5), (6)).

J,. (y ,z,) J.my (Xy ,(0)

Jrny ( Y ,zt) J,,. (x ,y ,to)

The far field potentials due to the magnetic current are given by:
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Fr'to)- e '-jkr b j -ko(x sine cosv+(y - b)smO sinw)xdy (4a)
Co eO J a~mxnx y.WW

aO e-jkor  b j . ko(x smO cosw+(y -- )sm6 si W)d)

Fy (r ,0) - Co r Jo J Jmy (x,y,o)e
-7

The far fields are given by

H 0(0,WO) =-j OFx (0,,o) cosO cosXV - i oFy (0,N,o) cosO sinxV (5a)

H w(O,q,o) = j oFx (0,I,(o) sinxV - j oFy (0,xV,o) cosWi (5b)

EM,=-ZoH0 (5c)

Eo=ZoHW (5d)

where Z0 = 376 Q is the free-space impedance. To get the radiation pattern, we can take off the

factor e!! in the computation of F, and Fy. That is,r

D (0,i,o) - (I Ho1 2 + I Hvl2) (6)

Radiated power can be found through

Pr() ZoJJ (I Hel2 + I HvI2)r2 dQ2 (7)
47c

2.4 Current, Voltage and Propagation Constant

As we all know, a microstrip lines does not support TEM modes. However, it supports

quasi-TEM modes. Hence we can define currents and voltages with good enough unambiguity. At

any reference plane z =constant, the voltage and current are given by

V(z,o)=, )Jo Ex(xy,z,o)dx dy (8)

I (z,o) = 2 f1 H, (zso) -dl (9)

Where I is the path surrounding half the metal strip. The integration along y direction in the

voltage expression is used to average the voltage along y when w/h is small. It's obvious that

we want to calculate these quantity at points far from the feeding point to avoid higher order

modes.
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The propagation constant K(o) = a + j 0 is found from calculation of uniform microstrip

transmission line by

eY(OX×'-_i)= V(zj,to) (10)V (zi ,t)

2.5 Input Impedances and Resonant Frequencies

The complex power delivered through an antenna loaded microstrip line (PI) includes

power radiated through the microstrip antenna (P,), the power leaked through surface wave (Ps)

which is supported by the dielectric substrate, and the power consumed by the artificial absorbing

boundary condition and damping absorbing boundary condition at the side plane (Pb).

Pt =Pr +Ps +Pb (11)

When the computation domain is not large enough, or the artificial absorbing is too close to

the near field, Pb become significant and the accuracy of impedances becomes questionable.

The formula that give the power transfer at any reference plane z =contant. are

P, (z,(o) = 2J(E H; -E, H) dX dy=VI*=~ y., I V124Z. 1112 (12)
S

Where S is the area of half cross section of the computation domain. Hence the input impedance

has 3 definitions

1) Zi, (z,o)= -(Z- (13a)

2) Zi. (z,o)= 2P(z,o) (13b)

3) Zi,, (z,o) = I V(Z ( 0,)12 02P (z,o) (13c)

Calculations have shown that all the above definitions end up with almost the same Zi.

This confirms that the previous definition of current and voltage are meaningful.

When the configuration is just a transmission line, the input impedance become characteris-

tic impedance (Z, = Zi,, ).

To obtain the input impedance at feeding point, we calculate the input impedance at a z

first, then transfer it to the feeding point z=z0 , to avoid near fields.

-12-



Zi, (z,co) = -('- (14a)

zI (Z ,(0)-z ()

F(z ,o) = Zi. (z ,o) - Zc ((o) (1 4b)

F(zo,o) = F(z ,o)e 2(z-z0) (14c)

Zi. (z o,to) = Z.: (0) 1 + F(z0,o)) (14d)T - F z00 1 14d

The resonant frequency is defined as the frequency when the imaginary component of input

impedance is zero. If we write

Zi. (zo,oo) = R (zo,oo) + j X (zooo)

then at resonance

X (z o,0) = 0

and R (z o,too) is the resonant resistance.

3. NUMERICAL TECHNIQUE AND CONSIDERATIONS

3.1 Excitation Pulse

The pulse is excited by setting E. under the microstrip to be the prescribed waveform vary-

ing with time steps, and E. elsewhere on front plane to be zero. Other tangential field component

on the front plane are set to zero all the time. This kind of arrangement need some time for the

wave to travel some distance to change to the real distribution. This scheme also generate some

DC magnetic field near the front plane. This DC field, though not harmful to the traveling wave,

can cause trouble when you change the boundary condition at the front plane.

3.2 Boundary Conditions

Although we are dealing with an open structure we still need to confine our computational

domain to a closed surface boundary. On that surface, we use absorbing boundary condition to

simulate wave propagation in free space, i.e. to make the boundary transparent to EM waves.

Generally, it is impractical to simulate the perfect absorbing boundary condition because it

requires knowledge of electrical and magnetic tangential fields on the closed surface for all past
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time. Since the field on the boundary is mainly determined by the most recent fields of nearby

space region, many schemes have been constructed utilizing local field to approximate perfect

radiation boundary condition. Here we have chosen simple shift plus super-absorbing boundary

condition for its simplicity of implementation and high accuracy. Damping absorbing boundary

condition is also chosen to stabilize the whole leap-frog scheme.

(a) Super-absorption

The super-absorbing boundary condition is not in itself a boundary condition, but a scheme

that can be applied to other existing boundary condition and get better result than the original one

does. Mei has found that, if one applies an absorbing boundary condition on H to get H1, at a

boundary wall and applies the same boundary condition on E to get E2, and compute H2 at the

same point as H, through leap-frog scheme from E2, then the error due to imperfect absorbing

boundary condition in H1 and H2 possess opposite sight. Hence, by proper linear combination of

H, and H2, we can cancel the errors due to reflection,

(b) Damping

The basic idea of damping absorbing condition is to simply assign some buffer layer right

inside the boundary, which has proper electrical and magnetic loss and become larger and larger

toward the outer boundary. The EM energy can be dissipated in this damping layer with little

reflection. The loss terms enter Maxwell equation as follows,

aE_ 1 VxH-yE (ISa)
i3t £

S= V x E - yH (15b)

It's easy to show that the wave impedance Zo 11 - Hence there would be no

reflection for normal incident plane waves. The TDFD leap-frog scheme for equation (15) can be

approximated as follows

E +1 =(1 -At -y)Ein+ l  (1 6a)
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Hn+'A = (1 - At y) Hn+" (16b)

where En + , Hn +74 are obtained by the original scheme when Y= 0. Define d(r)= [I -At y(r)],

then the damping boundary condition is simply implemented by multiplying the field obtained

from normal scheme (1) by d(r). A different function form of d(r) results in different percentage

of reflection. In this program, we have chosen d (z) to be in the form of e- 2 .

In this calculation, we have chosen the computation domain to be a box [2]. And the sur-

faces of the box are parallel to the coordinate surfaces. On the center plane, we apply boundary

condition of a magnetic wall, i.e., tangential magnetic fields are anti-symmetrical, tangential

electrical fields are symmetrical. The bottom plane is a electrical conductor of the substrate. On

the other end plane, we use a simple shift of previous fields at some inner layer as the new fields

on end plane to simulate the propagation of waves. On the side and upper planes, since there is no

outgoing wave, the fields should die off compared to the inner layers, but the field should have

the same phase as their inner layers. For simplicity, we obtain the boundary fields by shifting the

fields one space step from the inner layer of one earlier time step. This arrangement can introduce

some loss of EM energy because the boundary condition is really a radiation boundary condition.

If we don't move the side boundary far enough from the patch antenna, energy loss will become

serious, which greatly influences the calculated input impedance lever of antenna. As for the front

plane, which contains the excitation some special treatment is needed. We need to excite the

input pulse here, and yet wish this plane to be transparent to the reflected pulses. To accomplish

this, we first apply a fixed boundary conditions to generate the pulse and after the pulse have

passed we switch to an absorbing boundary condition there. Here, we have applied both the

damping absorbing boundary condition [17] and the super-absorbing boundary condition to get a

good absorption as well as stability for the leap-frog scheme.

3.3 Stability

According to [5], an initial boundary value problem is stable if and only if
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(1) the Courant stability condition given by equation (17) is satisfied everywhere inside the

finite element mesh region,

v,, xdt < (17)
- + +

(2) the numerical model (including boundary conditions) admits no plane wave solutions that

grow from each time step to the next by a constant factor absolutely greater than one, and

(3) the model (including boundary conditions) admits no wave solutions with group velocities

which support active radiation of computation.

One can always cheise dt, dx, dy, dz to satisfy condition (1) if computer capacity allows.

However, it is usually too complicated for us to be able to check conditions (2) and (3).

Since it is impossible to eliminate reflection completely by the absorbing boundary condi-

tions and conditions (2) & (3) are uncertain, we have no guarantee that the computation will be

stable. Instabilities caused by reflections from absorbing walls were reported by Zhang [4].

Zhang was able to avoid instability of the microstrip problem by truncating the time domain data

before major reflections from boundaries return. Unfortunately, the truncation trick cannot be

applied to the antenna problem, because a microstrip antenna, especially those with thin sub-

strates, must go through several oscillations before the fields within the patch are diminished to

negligible amount.

Another stability problem is related to the switching of boundary conditions at the front

plane, i.e., the plane of excitation. As we have mentioned earlier, the plane containing the excita-

tion is a short circuit except at the microstrip. This short circuit plane is switched to be an

absorbing plane after the excitation pulse has passed. This switching of boundary conditions actu-

ally causes instability.

The damping method of absorption adds stability to the time domain method, because it

always dissipate energy in the solution process. But, the damping method is very demanding on

memory. Usually it takes about 60 extra space steps on each side of the boundary wall to reduce

the reflection down to acceptable level.
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In this investigation, we have combined the damping technique with the super-absorption

method, and have found that only an extra 20 space steps at the excitation wall and the end wall

(the wall opposite to the excitation plane) is sufficient to reduce reflections and stabilize the solu-

tion.

3.4 Choice of Parameters

The excitation is chosen to be a Gaussian pulse since the Gaussian pulse and it's Fourier

Transform (also a Gaussian) have a smooth waveform yet can give enough frequency range. The

pulse is in the form

E ,(t) = exp (t-to)2 (18)

Where to is chosen to be large enough to suppress the discontinuity introduced by turning

on the signal at t=0. T is chosen to adjust the pulse width to be wide enough so that its discrete

representation in space is well behaved and yet kept narrow to save computation time. Typical

values chosen are

to= 140 dt

T = 40 dt

The parameters which describe the structure discretization computed are defined in Fig. (2).

The discretization of the computational domain are not the same in the x ,y ,z directions. Let

dx = 1, and dy = r 2 and dz = r 3. We have to choose r 2 small to allow discrete representation of

the microstrip but not too small to exhaust the computer memory. r 3 is chosen so that the

Courant condition of (17) is satisfied in free space and also in the substrate. Since the wave trav-

els slower in the substrate, the ratio k = vdt is chosen to be 1/6 to 1/7.

4. NUMERICAL RESULTS

In the following, we have computed different cases for both thin and thick microstrip

antenna. Results are compared with those of other authors or with empirical formulas. Reason-

ably good agreement is shown. Only the lowest resonant frequency is considered here. All the

-17-



patch antennas are fed at center of the width by microstrip lines.

4.1 General Description--Qualitative

Plot in Fig. (7)-Fig. (10) are E, fields just underneath the microstrip line and patch antenna.

Figure (7) shows the Gaussian pulse traveling down the microstrip line. Figure (8) shows the

same pulse shortly after it hit the front edge of the patch. Figure (9) shows part of the pulse

reflected back by the front edge of the patch antenna, part of it continue traveling down along the

patch antenna. Figure (10) is at the state of resonance. The pulse bounce back and forth between

the front edge and end edge of the patch antenna.

Figures (11) and (12) show how the current and voltage pulses are reflected back from

edges of the patch antenna. These waveforms are for different locations along the microstrip feed

line. The 1st peak in the waveform is the input pulse, the 2nd one is the reflection from front edge

of the patch antenna, the 3rd one, the small peak, is the reflection from side edge of the patch, the

4th peak is from the end edge of the patch and so on. As we can see, the reflected wave decays

very slowly for electrically thin microstrip antenna.

Figures (13)-(14) show the amplitude distribution of the equivalent magnetic current at

resonant frequency. Figure (13) is for J,,,,, Fig. (14) is for Jmy. Clearly seen in the figure is that

the field have no variation along the width of the antenna. The variation along the length of the

antenna is sinusoidal like. This implies that the cavity model and transmission line model are rea-

sonable. We should also notice that TDFD method have taken into account the effect of the

microstrip feed line, because the magnetic current there is exactly zero. Notice the difference of

fields between the front edge and end edge of the antenna due to traveling wave effect. This devi-

ation of calculated fields from cavity mode fields does not have much effect on the symmetry of

radiation pattern near the resonant frequency, but does have an effect of resonance.

Figures (15) and (16) show the radiation patterns at resonant frequency. Shown on Fig. (15)

is the Ee component on E-plane, where E. component is negligible. Figure (16) shows the EW

component on H-plane where the component E0 is negligible. The coordinate which correspond
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to the definition of 0 and W is shown in Figs. (5), (6). The radiation pattern do not change much

near resonant frequency, and radiation pattern for different patch antennas are about the same at

the first resonant frequency. A general case when it's off resonant frequency is shown in Fig.

(17)-(18), where we can see the unsymmetrical radiation pattern. This unsymmetry comes from

the feeding system which is unsymmetrical, and because the fields distribution under the micros-

trip antenna are really unsymmetrical in general.

4.2 Comparison Results--Quantitative

4.2.1 Electrically Thin Substrate Microstrip Antenna

Case I

Parameters used in the following computation are:

PARAMETERS VALUES DISCRETIZATION

Substrate thickness h =0.159 cm mp I = m I = 4

Width of the feeding microstrip line w = 0.447 cm m 2=3

Width of microstrip antenna a =4.02 cm 2 mp2 = 54

Length of microstrip antenna b =4.02 cm mp 32 - mp 31 54

Substrate dielectric constant r = 2.55

Space scaling factor rl = 1.0

rl = 1.0

r2 = 1.8742133

r3 = 1.8742133

The constant k k = 0.389165393

The Computation Domain: (n lxn 2xn 3) = (30x50x 170)

Time steps taken: nt = 7300.

CPU time needed on Cray-1: 1102 seconds

Figure (19) is the Smith Chart which gives the input impedance loci near resonant fre-

quency compared to experiment results obtained by Pozar [12]. The resonant frequency is the fre-

quency where the impedance loci crosses the real axis of the Smith Chart. The key parameters at

resonant frequency are:
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Items fo R (f o)

Experiment 2.270 411 C

TDFD 2.220 427 C

The slight difference in resonant frequency and the resonant input impedances between our

theoretical results and Pozar's experimental may just be the difference in feeding arrangement

between our model (using microstrip) and his experiment (using coaxial line). In any case, the

agreement is quite remarkable.

Case 2

In the following, resonant frequency obtained by TDFD method is compared with Y. T.

Lo's results. Good agreements are observed. Parameters for this computation are

a = 7.6 cm

b = 11.4 cm

w = 0.437 cm

h =0.159 cm

r =2.62

The resonant frequencies obtained are:

Lo's experiment Lo's theory TDFD method

0.803 GHz 0.813 GHz 0.797 GHz

4.2.2 Electrically Thick Substrate Microstrip Antenna

As indicated before, the TDFD method can handle electrically thick substrate antenna better

than thin ones. In the following examples, the memory requirement for a thick substrate antenna

is somewhat relaxed and the time steps needed is about only one third of that needed for thin sub-

strate antennas. The problem of instability due to changing of boundary condition on the front

plane is less significant here. The reason for needing less time steps is that the electrically thick

substrate microstrip antennas are more efficient radiators, so there are less oscillations within the
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antenna.

In all the following computations, the substrate thickness is 0.3175 cm, the relative dielec-

tric constant of the substrate is 2.33.

Figures (20)-(24) shows input impedance loci for different antenna patch size. The input

impedances are normalized to 50 Q.

Not much work on electrically thick substrate microstrip antenna has been done. Chang 114]

has done some measurements on resonant frequency of thick substrate antennas. He used a coax-

ial line as the feed. And because of noises in the measurement, there was no zero reactance of

input impedance, hence he defined resonant frequency to be the frequency when real part of input

impedance is maximum. From our experience in the calculations, resonant frequency is sensitive

to feed arrangement. Therefore it is not proper to compare our results to Chang's results. We

compare instead to the results obtained by an empirical formula.

From the impedance locis, we obtain resonant frequencies. These results are compared to

the empirical formula ([181 pp. 46, 57). Good agreement (within 4%) can be seen. It shou!d be

noticed that the empirical formula was not meant to predict resonant frequencies for electrically

thick substrate antennas. The formulas used are given as follows

The effective dielectric constant ise,~ +I+E 1+1
r' e ( T 2 w J

Where w is the width of the patch antenna in our calculation.

The effective extension of patch length is

0.4 12 (cff (a) + 0.3)[ a- + 0.264]

Ab = I

(eeff (a) - 0.258) [ + 0.8]

The predicted resonant frequency is
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fr m

2(b + 2 Ab) 4_-,7

Where c is the speed of the light. b is the length of the antenna.

Comparison of resonant frequencies for different antenna sizes are shown in the following

table

a b fr (empirical) f, (TDFD)

1.7 1.1 7.4 7.56

1.4 0.9 8.71 8.93

1.2 0.8 9.57 9.9

1.05 0.7 10.6 10.95

0.9 0.6 11.9 12.33

5. CONCLUSION

The time domain finite difference method has been successfully applied to a class of

microstrip antennas. It has been shown with convincing evidences that the modeling of the feed

and the advanced absorbing boundary conditions we have used are good dependable techniques

to make the TDFD method practical. It has also been shown that the method is more efficient for

broadband antennas than for narrow band antennas. We are confident that this technique will

enable us to solve the flare antenna even with greater confidence. Using the patch antenna as a

vehicle we have isolated the fecding and absorption problems and convinced ourself that those

problems have been solved. We can now proceed to our final objective of solving the pulse radi-

ating antennas.
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Fig. (2) Computation domain and definitions of quantized parameters.
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Fig. (4) The equivalent magnetic currents for computation of radiation field in the
upper half space.
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